

In vitro and *in vivo* determination of antiTNFa activity in canine plasma from donors subject to preconditioning with endotoxin

M Kotiw^a, M Morgan^b, J Lopez^a, S M Taylor^b and I A Shiels^b

^aCentre for Systems Biology, University of Southern Queensland, Toowoomba, Queensland 4350, Australia ^bSchool of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia

BACKGROUND

Septic shock is characterized by eardiovascular and vasomotor failure that is induced by an uncontrolled easeade of inflammatory mediators such as TNFa, $\text{IL}\beta$ and $\text{IL}\delta$. In dogs, systemic bacterial infections, haemorrhage, trauma, gastrie dilatation/volvulus and pancreatitis are the major causes of septic shock. Whilst endotoxin is a recognized effector molecule that can initiate an inflammatory cascade, it has been reported that preconditioning with endotoxin can down-regulate inflammatory cytokine responses to subsequent endotoxin challenge. This study reports the effect of endotoxin preconditioning on antiTNFa activity present in plasma from canine donors.

MATERIALS

Plasma from preconditioned (Caniplas®) and normal dogs (FFP) was provided blind to the study by a commercial supplier (Plasvace Pty Ltd).

METHODS

In vitro antiTNFa activity in canine donor plasma was determined by a L929 murine cell TNFa inhibition bioassay using recombinant murine TNFa. In vivo effects were tested by a rat subentaneous skin pouch model. Rats were pretreated for 3 days with either Caniplas®, FFP, saline (2mL/day, s.e) or carprofen (5mg/kg, s.e) and inflammation induced by injecting monosodium urate crystals into the pouch (5mg/ml in 5ml saline). Fluid was taken from pouches at specified intervals for cell count. TNFa and II-6 levels were determined by Elisa. Protein profiles of Caniplas® and FFP were determined by standard SDS PAGE analysis. Examination of serum for soluble TNFa receptor 1 (sTNFR1) was performed by an immunofluorescence assay using a rabbit polyclonal anti s'TNFR1 antibody and a FITC conjugated goat anti rabbit antibody as the detection fluorochrome. Data analysis: Normalized data was fitted to a Four-Parameter Logistic curve. Fitted midpoints were compared statistically for data sets using an F-test and calculated fitted hill slopes.

RESULTS

In the rat skin pouch model, both Caniplas® and FFP reduced TNFa levels and Caniplas® was a more potent antagonist (data not shown). The heightened anti TNFa activity of Caniplas® compared to FFP was confirmed in the *in vitro* cell bioassay (Figure 1). Neither Caniplas® nor FFP reduced inflammatory cell infiltration or levels of IL6. There was also possible evidence that the effector mechanism in Caniplas® may be increased levels of soluble TNFa receptor 1 (Figure 2). A difference in the protein profile between Caniplas® and FFP by SDS Page analysis (Figure 3) was detected, although the nature and significance of this difference remains to be determined.

CONCLUSION

Whilst we remain to confirm the mechanism, we report that preconditioning with endotoxin does illicit specific anti TNF α activity and that this observation has been confirmed in both in *in vitro* testing and *in vivo* animal models. It is plausible that preconditioning animals with endotoxin induces an increase in the concentration of soluble TNF α receptors I and II in donor plasma and that this is the likely source of TNF α antagonism. This report suggests that preconditioned plasma may be a beneficial treatment where inflammation causes increased expression of TNF α .